
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

Distributing Hot-Spot Addressing in Large-Scale
Multiprocessors

PEN-CHUNG YEW, MEMBER, IEEE, NIAN-FENG TZENG, MEMBER, IEEE, AND DUNCAN H. LAWRIE, FELLOW, IEEE

Abstract-When a large number of processors try to access a
common variable, referred to as hot-spot accesses in 161, not only
can the resulting memory contention seriously degrade perform-
ance, but it can also cause tree saturation in the interconnection
network which blocks both hot and regular requests alike. It is
shown in [61 that even if only a small percentage of all requests
are to a hot-spot, these requests can cause very serious perform-
ance problems, and networks that do the necessary combining of
requests are suggested to keep the interconnection network and
memory contention from becoming a bottleneck.

Instead we propose a software combining tree, and we show
that it is effective in decreasing memory contention and prevent-
ing tree saturation because it distributes hot-spot accesses over a
software tree whose nodes can be dispersed over many memory
modules. Thus, it is an inexpensive alternative to expensive
combining networks.

Index Terms-Combining networks, hot-spot memory, mem-
ory bandwidth, memory contention, software combining tree,
synchronization.

I. INTRODUCTION

A LARGE, shared-memory multiprocessor system such as
Cedar [1], the NYU Ultracomputer [2] or IBM RP3 [3],

may contain hundreds or even thousands of processors and
memory modules. Multistage interconnection networks such
as the Omega network [4] or its variations [5] are usually used
to provide communication between these processors and
memory modules.

In these systems, any variable shared by these processors
will create memory contention at some memory modules.
Those shared variables could be locks for process synchroni-
zation [15], loop index variables for parallel loops [12], etc.
Even though accesses to these shared variables (called hot-
spot accesses in [3] and [6]) may account for a very small
percentage of the total data accesses to the shared memory
(typically less than ten percent are observed in most applica-
tions), this memory contention can create a phenomenon
called tree saturation [6], and can cause severe congestion in
the interconnection network. It is shown [6], [14] that tree
saturation due to hot-spot contention can seriously degrade the
effective bandwidth of the shared memory system.

Various schemes like combining networks used in the IBM

Manuscript received September 3, 1986; revised November 23, 1986. This
work was supported in part by the National Science Foundation under Grants
US NSF DCR84-101 10 and US NSF DCR84-06916, and by the Department
of Energy under Grant DOE DE-FG02-85ER25001.

P.-C. Yew and D. H. Lawrie are with the Center for Supercomputing
Research and Development, University of Illinois, Urbana, IL 61801.

N.-F. Tzeng is with AT&T Bell Laboratories, Columbus, OH 43213.
IEEE Log Number 8613051.

RP3 [3] and NYU Ultracomputer [2], or the repetition fiter
memory in the Columbia CHoPP [7] has been proposed to
eliminate such memory contention. The basic idea of these
schemes is to incorporate some hardware in the interconnec-
tion networks to trap and combine data accesses when they are
fanning in to the particular memory module that contains the
shared variable. Because data accesses can be combined in the
interconnection network, it is hoped that memory contention at
that memory module can be eliminated.

However, the hardware required for such schemes is
extremely expensive. It is estimated [6] that the extra hardware
increases the switch size and/or cost by a factor between 6 and
32, and this is only for combining networks consisting of 2 x
2 switches. With k x k switches (k > 2), the hardware cost
will be even greater. The extra hardware also tends to add
extra network delay which will penalize most of the regular
data accesses that do not need these facilities, unless the
combining network is built separately as in RP3 [6].

Furthermore, the effectiveness of the combining network
depends very much on the extent to which such combining can
be done. If such combining is restricted as described in [8],
i.e., if the number of requests that can be combined is
restricted to k in a k x k switch, then the effectiveness of the
combining network can be limited. Unless this combining is
unrestricted, tree saturation can still occur even in a combining
network [8].

In this paper, we are studying this problem from a different
perspective. We assume a shared memory multiprocessor
system like Cedar [1] with a standard, buffered Omega
network providing interconnection [9], and without expensive
combining hardware. In addition we use a hardware facility in
the shared memory modules to handle necessary indivisible
synchronization operations for the shared variables [10].
Regular memory accesses bypass this hardware without delay
and, hence, will not be penalized. Each memory module will
handle memory accesses, including those memory accesses to
shared variables, one at a time.
To eliminate memory contention due to the hot-spot

variable, a software tree is used to do the combining. This idea
is similar to the concept of a combining network, but it is
implemented in software instead of hardware. We will show
that this scheme can achieve quite satisfactory results as
compared to more expensive hardware combining.

II. HOT SPOTS AND TREE SATURATION

The phenomenon of how hot-spot accesses can cause tree
saturation is briefly described here. For a more detailed
analysis and discussion, please refer to [6].

0018-9340/87/0400-0388$01.00 © 1987 IEEE

388

YEW et al.: DISTRIBUTING HOT-SPOT ADDRESSING

~' 80(

h 601
0

0
a.0

2a

Fig. 1. Asymp
of processors
hot spot (resu

Assume N
there are als
system. Each
per network
percent of th
network cyclh
normal reque
total ofNrh -
request per
maximum nel

and the tota]
memory systU

Fig. 1 shov
shows that in
of only one Ix
less than ten

Notice thai
can continue
processor stil
the network. I
spot requests
tion operation
of the synchi
request to the
from a procer
issues in mor

To illustrat
us assume tha
we want eac]
when all proci

0.125%

0.25%

I .7 ~~~~~~~~~0.5%

hot-spot location

level 2

level 1

ooob o....o
Fig. 2. A software combining tree with fan-in of 10.

ix / =S a common way of making sure all processors are finished with
2% a given task before proceeding with a new task, for example,

0 200 4 60 am IwO and is one cause of hot-spot accesses. Now suppose that
instead of one single variable, we build a tree of variables,

Number of Processors and Memories** assigning each to a different memory module, as shown in Fig.
totically maximum total network as a function of the number 2. If N = 1000 and assuming a fan-in of 10, we have 111
-for various fractions of the network traffic aimed at a single variables each with value 10. We partition the processors into
lts from [6]). aabeeahwtvau10Weprtothprcsrsio

100 groups of ten, with each group sharing one of the variables
r is the number of processors in the system, and at the bottom of the tree. When the last processor in each

'is t m fgroup decrements its variable to zero, it then decrements the
;o N memory modules in the shared memory.'value in the parent node. Thus, we have increased the total
processor issues r requests to the shared memory number of accesses from 1000 to 1110, but instead of having
cycle (0 < r < 1). Among those requests, h one hot spot with 1000 accesses, we have 111 hot spots with
ie requests are hot-spot requests. Thus, in each

' trr r os rusnonly 10 accesses each. It should be clear that this will result in
e, there are Nrh hot-spot requests and r(l - h)

rected a slgnificant improvement in throughput rate and bandwidth,,sts di to the "hot" memory module for a and the simulations we describe later verify that even if wei- r(1I- h). If each memory module'can accept 1
account for the increase in total accesses, the improvement isnetwork cycle (i.e., the maximum rate), the still quite significant. It should also be clear that a three-leveltwork throughput per processor is
tree with fan-in equal to ten is not necessarily optimal, but that

H= 1/(1 + h(N- 1)) (A) the optimal point depends on access times and on other factors.
Another basic operation that can be implemented with a

I effective memory bandwidth for the shared software combining tree is busy-wait. Here it is assumed that
am is processors are waiting for a shared variable to change in some

way. Presumably some other processor will cause this change.
B = N/(1 + h(N- 1)). (B) We build a combining tree as before, this time assigning one

processor to each node in the tree. Each processor monitors
vs B as a function ofN for various h . This clearly the state of its node by continually reading the node. When the
a system with 1000 processors, hot-spot traffic processor monitoring the root node detects the change in its
ercent can limit the total memory bandwidth B to node, it in turn changes the state of its children's nodes, and so
percent. on until all processors have detected the change and are able to
t this discussion assumes that hot-spot requests proceed with the next task.
to be issued from a processor even if that This idea, in a sense, is not very different from a hardware

11 has an unsatisfied hot-spot request pending in combining tree built from 10 x 10 switches, except that the
In many applications this is not true, because hot- combining buffer that would be inside each switch now resides
are usually related to some kind of synchroniza- in a shared memory module in a software combining tree. One
i: A processor usually has to wait for the outcome distinct advantage for a software combining tree is that we can
ronization operation before it can issue another tune performance by changing the fan-in of each node without
e synchronization variable. So, the issuing rate incurring any hardware cost.
ssor is inherently limited. We will address these
,e detail in later sections.

IE. SoFrwARE COMBINING TREE

;e the principle of a software combining tree, let
it we have a variable whose value is N, and that
h processor to decrement this variable so that
essors are finished, the value will be zero. This is

A. Modeling of Software Combining Tree

We will classify hot-spot accessing in two ways. First,
accesses will be limited or unlimited depending on whether a
given processor can have only one or more than one hot-spot
request outstanding. We let -q denote the number of outstand-
ing hot-spot requests. Second, the number of accesses will be
fixed or variable depending on whether the total number of

389

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

accesses is fixed, or whether the total number varies depend-
ing on the number of conflicts or some other factor. For
example, assume we are adding a vector of numbers to form a
sum. Then each processor can have more than one outstanding
request to add an element to the shared sum, but since we
assume the addition is done indivisibly by logic in the
memory, the total number of requests generated by all the
processors is fixed. This case is unlimited-fixed. A case like
the one described earlier, where processors are decrementing
a counter to see which is the last processor, is limited-fixed. A
third example is illustrated by busy waiting where the
processors may all be waiting for one processor to complete
some task. Each processor continually reads the value of a
shared variable until the value changes, for example from zero
to one. Thus, the number of requests to the hot-spot depends
on how soon the variable gets reset, and this case is limited-
variable. Notice that a barrier synchronization [11] can be
implemented by a counter decrement (limited-fixed), fol-
lowed by a busy wait (limited-variable) triggered by the final
processor which decrements the counter.
When we implement combining trees for hot-spot accesses,

it is important to minimize the possible memory contention, so
it is preferable that all shared variables in a software
combining tree (i.e., the nodes of the tree) reside in separate
memory modules. The largest combining tree we can con-
struct for a hot-spot is a tree with minimum fan-in, i.e., a fan-
in of two. The total number of nodes in a combining tree with
Nleaves is N/2 + N/4 + * * * + 2 + 1 = N - 1. Hence, it
is always possible to spread those nodes across N separate
memory modules. Our simulations in this study assume all of
the nodes in a software tree to be in separate memory modules.
We also assume the following system configuration in our

simulations.
1) There are two identical, back-to-back, unidirectional

Omega networks: one is for traffic from processors to the
shared memory; the other is for traffic from memory returning
to the processors. Both networks are packet-switching, pipe-
lined networks.

2) Each network consists of 2 x 2 switching elements with
an output buffer of finite size at each output port of a switching
element. The fan-in capability of each output port is two, i.e.,
it can accept two simultaneous requests from its two input
ports. One request is forwarded to the next stage and the other
is stored in the output buffer. If the output buffer is full, no
more requests are accepted by the output port. In our
simulations, we assume the size of the output buffer to be four.

3) There are many different algorithms to implement
software combining trees for various types of shared variables
[17]. It is beyond the scope of this paper to describe those
algorithms. Instead, we used a very general and simplified
model to simulate a software tree. Each node of a software tree
contains a counter with an initial value of 0. In the limited-
variable case, the counter is decremented to - 1 by the first
processor which visits the node. The rest of processors sharing
the node will be busy-waiting whenever the counter value is
- 1. The extra delay for busy-waiting is accounted for in
simulations. The first processor will visit its parent node and
bring back a positive value equal to the fan-out of the node.

The counter is set to that value and the rest of processors can
then decrement the counter and move on. The counter will
eventually become 0 again and the whole process will repeat.
This model is very similar to broadcasting a scalar to all
processors through a software combining tree. The scalar may
be updated from time to time. In the limited-fixed or the
unlimited-fixed case, processors will increment the counter
until it equals to the fan-out of a node. A representative is then
chosen to reset the counter and also to increment the counter in
its parent node. The whole process will repeat at the parent
node. This model is very similar to the first part of a barrier
synchronization where processors increment a counter to see if
all of them have reached the barrier.

4) All requests are of the same length. In our simulations,
we assume each request consists of only one packet.

5) The access time of a memory module is one network
cycle, i.e., the time for a request to go through a switching
element when no conflict exists.

B. Possible Overhead in a Software Combining Tree

As mentioned earlier, constructing a software combining
tree creates many shared variables. Therefore, more hot-spot
traffic is created even though that traffic generates less
memory contention.
As before, let us assume that the hot-spot rate from a

processor is r x h, and the software combining tree has a fan-
in of k for each node. For fixed-type access patterns, the
fractional increase in hot-spot traffic will be

logkN-1 r h -((k/N))
v rhlk=rhI.

When k = 2, the increased hot-spot traffic is rh(I - 2/N),
which approximates the original hot-spot traffic for large N.
This means that the hot-spot traffic cannot be more than
doubled after all of the extra hot-spot traffic is included. As we
will see later in our simulations, the decreased memory
contention will more than offset the increased hot-spot traffic
if h is less than 30 percent.

For variable access patterns, the additional accesses caused
by the combining tree are difficult to quantify because the
number of accesses is not fixed to begin with. In practice,
since busy-waiting is often the cause of variable access
patterns (with q = 1), and the number of accesses for a busy-
wait operation depends on how quickly the state change is
propagated to the children in the tree, the total number of
accesses could even be less than that required by a single
shared variable; the state change can be propagated more
quickly by the combining tree than by N accesses to a single
shared variable.

IV. BOUNDS ON BANDWIDTH

A. Unlimited Hot-Spot Requests Per Processor

In a packet-switching Omega network, with finite buffers in
each switching element and with hot-spot rate h = 0, we still
cannot achieve 100 percent memory bandwidth because of
conflicts in the network [9]. These conflicts are also possible if

390

YEW et al.: DISTRIBUTING HOT-SPOT ADDRESSING

a crossbar switch is used. If we assume R to be the maximum
request rate reaching a memory module when no hot spot
exists, then in a steady state, R is also the maximum request
rate allowed for a processor. Therefore, we can consider R to
be an absolute upper bound on the bandwidth per processor.

The value of R depends on the network buffer size, the
length of a request, and the network switch size, etc. [13].
However, as h increases, the request rate to the hot memory
module, i.e., r(l - h) + rhk, will increase from R to 1. Tree
saturation will occur when the request rate to the hot memory
module approaches 1, and the maximum processor request
rate r will decrease. Heience, we have

R r(l -h)+rhk 1.

By rearranging the above equation, we have the following:

R/(l +h(k- 1)) rc 1/(1 +h(k- 1)).

1/1 + h(k - 1)) is equal to 1 when h is 0. Since the
absolute upper bound is R(R c 1) as discussed before, we can
have a tighter upper bound by using R, i.e.,

RIR/(1+h(k- l))crcR (C)

Notice that (C) also shows a lower bbund for the maximum
processor request rate r when a software combining tree is
used with a fan-in of k, and X is unlimited, i.e., even when il is
unlimited, the maximum bandwidth cannot be worse than
NR/(i + h (k -r 1)).
We obtained R fromn simulations, and in Fig. 3 we plot

lower bounds for various system sizes with h varying from 0-
32 percent. Notice that those curves are in a very narrow
range, i.e., the lower bound in (C) seems to be tight at least for
systems up to size 1024. The top dotted line in Fig. 3 shows R,
the maximum bandwidth we can get when there are no hot-
spot requests.
The degradation factor in (C) is 1 + h (k - 1). This

degradation factor is independent of the system size and
reaches a minimum when k = 2. Given unlimited hot-spot
requests, i.e., - . 1, the optimal software combining tree for
maximum memory bandwidth has a minimum fan-in of 2.

B. Single Hot-Spot Request Per Processor

If the hot-spot,request rate is limited (7 = 1), then there
cannot be more than N hot-spot requests in the system at any
time. For systems with instruction look-ahead or with data
prefetching capability, regular requests still may be issued
while a hot-spot request is pending. However, this case is not
different from that of unlimited hot-spot requests with a very
small h; when h is very small, it is unlikely that there will be
more than one hot-spot request pending at any time.

Hence, when tq = 1, we will only consider the case where
no additional requests, hot or regular, are issued by the
processor when there is a pending hot-spot request. Thus, the
bandwidth depends on the delay of the hot-spot requests. The
request rate from the processor is further restricted by any
increased delay. If a software combining tree is used to

OL--- - f -I
0 200 400 600 800 1000

Network size

Fig. 3. Lower bounds on network bandwidth for various hot-spot rates (71 =
unlimited).

eliminate the memory contention caused by the hot-spot
requests, the limiting factor for the memory bandwidth will
only be q; the inherent nature of the hot-spot that prohibits
further processor requests.

During a long period of time T, there will be rT requests
from a processor, among which rhT requests are hot-spot
requests. The processor will be barred from issuing any
request for a total period of rhTC where C is the average
round-trip delay for a hot-spot request. The processor can
issue a request only for a total period of T - rhTC. Within
that period, r(l - h)Tregular requests are issued. Hence, the
real issuing rate for regular requests is r(l - h)T/(T -
rhTC). This rate cannot be greater than 1, i.e.,

r(l -h)T/(T-rhTC)c 1.

This equation can be rearranged to obtain an upper bound for r

rc 1/(1 -h+hC). (D)

As expected, the maximum rate of r is greatly dependent on
the hot-spot delay C. This bound gets tighter as the hot-spot
rate h gets larger. When h = 1, the equality in (D) will hold.
Fig. 4 shows this upper bound for various hot-spot rates h with
minimum hot-spot delay of C = 2 log2 N. For N = 1000 and
h = 8 percent, the upper bound will be around 40 percent of
the total bandwidth. Notice that the upper bound in (D) is
valid evenfor a hardware combining network because it is a
bound imposed by the inherent nature of the hot-spot request
(i.e., ?)

V. SIMULATION RESULTS

To study the effectiveness of a software combining tree, we
performed several simulations for N - 256, with h varying
from 0-32 percent. These simulations are based on the system
models described in Section IIE-A. Fig. 5 shows the delay and
maximum bandwidth when neither a software combining tree
nor a hardware combining network is used. Following each
curve from left to right, each point represents a larger value of
r. As shown in [6], while r increases, bandwidth increases

391

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

Fig. 4. Upperbounds on network bandwidth for various hot-spot rates
(= ; 1).

"4)

0

z

a'

a'

bo

a'

Bandwidth (requests per processor per network cycle)

(a)

I--U)

-u

0

b4

f;.

0

z

(4
a)

4)

(b)
Fig. 5. Average network delay versus bandwidth for a network of size 256

(h varies from 0 to 32 percent).

while delay stays relatively constant up to a point of saturation.
After the saturation point, bandwidth ceases to increase while
delay gets worse. The results clearly show low bandwidth and
increased average network delay results'.; The maximum
bandwidth of 0.63N is achieved when h = 0.

Fig. 6 represents fixed-type access patterns with unlimited
-q, and shows the use of a software combining tree to reduce
hot-spot contention. The fan-in's for the software combining
trees are varied from k = 16 to 2. The improvement is quite
significant compared to the result in Fig. 5(a). According to
(C), the minimum degradation factor for the bandwidth can be
obtained when the software combining tree has the minimum
fan-in. In Fig. 6 we can see that when k = 2, the degradation
is indeed the smallest.
As presented in Section HII-B, the hot-spot traffic can be

nearly doubled by the extra hot-spot traffic created by the
software combining tree with the minimum fan-in k = 2. In
Fig. 6, h is indicated as the original hot-spot request rate; the
results shown there already include all extra hot-spot traffic.
This shows that with an original hot-spot request rate of 16
percent, the degradation remains small. The elimination of the
hot-spot contention, indeed, more than offsets the results of
increased traffic.
We also simulate some cases for fixed-type access patterns

with q = 1 (Fig. 7). If we take into account the fact that busy-
waiting is not required in this kind of access pattern, we can
see that the results are quite similar to those from our
simulations of variable-type access patterns discussed above.
In fact, the average hot-spot request delay, i.e., C in (D), is
smaller in this case. Also, as shown in (D), we can expect an
improved maximum rate r.

Fig. 8 represents limited-variable access patterns, wherein
no additional requests are issued by a processor while it has a
hot-spot request pending, but the total number of requests
allowed over time is not fixed. The upper bound on the
bandwidth given in (D) will depend on C, the average delay of
the hot-spot requests. The value of delay C includes the
overhead from traversing the software tree, busy waiting in the
intermediate nodes, and the possible memory contention.
From these figures, -we can see that the optimal fan-in k for the
software tree is no longer k = 2, but rather at around k = 4.
The increased fan-in k allows for a lesser number of levels of
nodes in the tree, thus reducing the time required for requests
to traverse the tree.

Furthermore, when h increases, the upper bound in (D)
becomes fighter. There is less traffic in the network due to the
restriction that no more requests will be issued when a hot-spot
request is pending. In this case, the turnaround time for a
request can actually improve as Fig. 9 shows.
The lower dotted lines in Fig. 5 through Fig. 9 are the

average delay of a request through the network assuming the
buffer size in each switching element is unlimited. These
values are calculated based on the analytical model in [16].

VI. DISCUSSION

Our simulations show that the software combining tree
effectively eliminates tree saturation caused by hot-spot
contention. However, the main purpose of the software

392

YEW et al.: DISTRIBUTING HOT-SPOT ADDRESSING

-'4

V
(L)
u
0

z'4

bO

0

Bandwidth (requests per processor per network cycle)
(a)

770

D 60
0
Ou

@ 50.z
32%a 40 16%

8%0%
U,

3030

20-

k= 4
100 0.2 0.4 0.6 0.8 1.0

Bandwidth (requests per processor per network cycle)

(b)

I--

U)

4)

z

'4a
Q

bO
'4
a)

Go

U-4

0

-W
0z

'4

0L)
U,

co'4

70

60

501

401

301

20

0 0.2 0.4 0.6 0.8 1.0
Bandwidth (requests per processor per network cycle)

(b)

I-'4
00

'4
0)

U,

hO

'4.
a)

~0 0.2 0.4 0.6 0.8 1.0

JBandwidth (requests per processor per network cycle)
(c)

Fig. 6. Average network delay versus bandwidth for unlimited-fixed access

patterns (N = 256, h varies from 0 to 32 percent).

combining tree differs slightly from the original purpose of the
hardware combining networks [2], [6].

Hardware combining networks were originally proposed to
speedup hot-spot requests by combining those requests in the

interconnection network and in this way eliminate memory

contention at the hot memory module. Because such memory
contention-creates the serious side effect of-tree saturation that

70

60

5_b

40.

30

20

~~0 0.2 0.4 0.6 0.8 1.0
Bandwidth (requests per processor per network cycle)

(c)

Fig. 7. Average network delay versus bandwidth for limnited-fixed access
patterns (N = 256, h varies from 0 to 32 percent).

can adversely affect even regular requests [6], such requests
must also be processed through the hardware combining,
network. Although it alleviates the problem of tree saturation,
hardware combining can cause extra delay in processing
regular requests.

Software combining trees seem to effectively relieve regular
requests from the side effect of tree saturation, without the

U,
-

CL)

0
B

'4

0

cd

'4)
U,

393

(a)

0%
2%o

32%16% 8% -

k= 4

70 -..

:

60

50 _

40
32%
416%

0%

30-

20

k= 2
10- ..

0%
2% k 2

- ~~~~k=2

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

70

601

501

401

30

20

' 70

V 60

0

40
S

e 30
' 50

S

20

0 0.2 0.4 0.6 0.8 1.0
Bandwidth (requests per processor per network cycle)

(a)

70[

60~

50o

40

30

20

in
--0 0.2 0.4 0.6 0.8 1.0

Bandwidth (requests per processor per network cycle)

(b)

~0 0.2 0.4 0.6 0.8 1.0
Bandwidth (requests per processor per network. cycle)

(a)

-0 0.2 -0.4 0.6 0.8 1.0
Bandwidth (requests per processor per network cycle)

(b)

0

z

4..

a5
be

70f

601

501

40

30

20

~0 0.2 0 4 0.6 0.8 1.0
Bandwidth (requests per processor per network cycle)

(c)

Fig. 8. Average network delay versus bandwidth for limited-variable access

patterns (N = 256, b varies from 0 to 32 percent).

expense of hardware combining networks. The beneficial
result from this scheme is that the service time of hot-spot
requests decreases. Theoretically, this improvement cannot be
as good as a hardware combining network with unrestricted
combining capability: In a software combining tree, a hot-spot
request must traverse the interconnection network logk N
times, whereas in a hardware combining network the request

Fig. 9. (a) Average delay of regular requests versus bandwidth for limited-
variable access patterns (N = 256, h varies from 0 to 32 percent). (b)
Average delay of hot spot requests versus ban4width for limited-variable
access patterns (N = 256, h varies from 0 to 32 percent).

must traverse the network only once. However, in a real
implementation, unrestricted combining in a switch is impos-
sible due to the complexity of the switches in a hardware
combining network. This will inevitably'hamper the effective-
ness of a combining network [8], and also introduces increased
delay due to the extra hardware. It is difficult to determine the
system size requirements necessary to prove the hardware
combining network to be the optimal method of speeding up
hot-spot requests. The effect of the somewhat slower hot-spot
requests on tota-I system performance, if the rate is very small,
also remains to be seen.

VII. CONCLUSIONS
When a large number of processors try to access a common

variable, referred to as hot-spot accesses in [6], not only can
the resulting memory contention seriously degrade perform-
ance, but it can also cause tree saturation in the interconnec-
tion network which blocks both hot and regular requests alike.
It is shown in [6] that even if only a small percentage of'all
requests are to a hot spot, these requests can cause very
serious performance problems, and networks that do the

394

S

U
0
0

LS

zA
'5
Si

S.

>bO
'5
S) 1%°% ..

32% 2%):

1k%8% 4%

I ~~~~~~k- 16

I-

1-
1%o °% 1

- 2%

k= 2

S

0)
;Y

>.b

V

z
'5

S

c

'5
S

co

¢)

I.

i%0% .

32% 2%o
16%8% 4%

k= 4

32% 1%0%

-2

YEW et al.: DISTRIBUTING HOT-SPOT ADDRESSING

necessary combining of requests are suggested to keep the
interconnection network and memory contention from becom-
ing a bottleneck.

Instead we propose a software combining tree, and we show
that it is effective in decreasing memory contention and
preventing tree saturation because it distributes hot-spot
accesses over a software tree whose nodes can be dispersed
over many memory modules. Thus, it is an inexpensive
alternative to expensive combining networks.

REFERENCES

[1] D. J. Kuck et al., "Parallel supercomputing today and the Cedar
approach," Science, vol. 21, pp. 967-974, Feb. 1986.

[2] A. Gottlieb et al., "The NYU ultracomputer-Designing a MIMD,
.shared memory parallel machine," IEEE Trans. Comput., vol. C-32,
pp. 175-189, Feb. 1983.

[3] G. F. Pfister et al., "The IBM research parallel processor prototype
(RP3): Introduction and architecture," in Proc. 1985 Int. Conf.
Parallel Processing, Aug. 1985, pp. 764-771.

[4] D. H. Lawrie, "Access and alignment of data in an array processor,"
IEEE Trans. Comput., vol. C-24, pp. 1145-1155, Dec. 1975.

[5] C. L. Wu and T.-Y. Feng, "On a class of multistage interconnection
networks,." IEEE Trans. Comput., vol. C-29, pp. 694-702, Aug.
1980.

[6] G. F. Pfister and V. A. Norton, " 'Hot-spot' contention and combining
in multistage interconnection networks," IEEE Trans. Comput., vol.
C-34, pp. 943-948, Oct. 1985.

[7] H. Sullivan, T. Bashkow, and D. Klappholtz, "A large scale
homogeneous, fully distributed parallel machine," in Proc. Fourth
Ann. Symp. Comput. Architect., June 1977, pp. 105-124.

[8] G. Lee, C. P. Kruskal, and D. J. Kuck, "The effectiveness of
combining in shared memory parallel computer in the presence of 'hot
spots'," in Proc. 1986 Int. Conf. Parallel Processing, Aug. 1986,
pp. 35-41.

[9] D. M. Dias and J. R. Jump, "Analysis and simulation of buffered delta
networks," IEEE Trans. Comput., vol. C-30, pp. 273-282, Apr.
1981.

[10] C. Q. Zhu and P. C. Yew, "A synchronization scheme and its
applications for larger multiprocessor systems," in Proc. 4th Int.
Conf. Distrib. Comput. Syst., May 1984, pp. 486-493.

[11] P. Tang and P. C. Yew, "Processor self-scheduling for multiple-nested
parallel loops," in Proc. 1986 Int. Conf. Parallel Processing, Aug.
1986, pp. 528-535.

[12] E. L. Lusk and R. A. Overbeek, "Implementation of monitors with
macros: A programming aid for the HEP and other parallel proces-
sors," Argonne Nat. Lab., Argonne, IL, Tech. Rep. ANL-83-97, Dec.
1983.

[13] P. Y. Chen, "Multiprocessor systems: Interconnection networks,
memory hierarchy, modeling and simulations," Dep. Comput. Sci.,
Univ. Illinois, Urbana, Rep. UIUCDCS-R-82-1083, Jan. 1982.

[141 R. Lee, "On hot spot contention," ACM SIG Comput. Architect.,
vol. 13, pp. 15-20, Dec. 1985.

[15] E. W. Dijkstra, "Solution of a problem in concurrent programming
control," Commun. Ass. Comput. Mach., vol. 8, pp. 569-569, Sept.
1965.

[16] C. P. Kruskal and M. Snir, "The performance of multistage intercon-
nection networks for multiprocessors," IEEE Trans. Comput., vol.
C-32, pp. 1091-1098, Dec. 1983.

[17] P. Tang and P. C. Yew, "Algorithms for distributing hot-spot
addressing in large multiprocessor systems," Center for Supercomput-
ing R.&D., Univ. Illinois, Urbana, Cedar doe. 617, Dec. 1986.

IN Pen-Chung Yew (S'76-S'78-M'80-S'80-M'81)
Ham _ received the BSEE degree from National Taiwan

University, Taiwan, in 1972, the M.S. degree in
electrical and computer engineering from the Uni-
versity of Massachusetts, Amherst, 1977, and the
Ph.D. degree in computer science from the Univer-.

Zi i g sity of Illinois, Urbana, in 1981.
u nL He is currently an Assistant Professor in the

Department of Computer Science and a Senior
Computer Engineer in the Center for Supercomput-
ing Research and Development, University of Illi-

nois, Urbana. He has been working on the architecture and hardware design
for the Cedar supercomputer since 1984. His current research interests are
parallel processing, computer architecture, high-performance multiprocessor
systems, and performance evaluation.

Nian-Feng Tzeng (S'85-M'87) was born on No-
vember 22, 1956 in Taichung, Taiwan, Republic of

X China. He received the B.S. degree in computer
science from National Chiao Tung University,
Taiwan, the M.S. degree in electrical engineering
from National Taiwan University, Taiwan, and the

i i*lg Ph.D. degree in computer science from the Univer-
. sity of Illinois, Urbana, in 1978, 1980, and 1986,

respectively.
Currently, he is a member of the Technical Staff

with AT&T Bell Laboratories, Columbus, OH.
Prior to joining Bell Laboratories, he was a Research Assistant with the Center
for Supercomputing Research and Development, University of Illinois,
Urbana, where he had been involved in the Cedar supercomputer project for
more than two years. His research interests include interconnection networks,
fault-tolerant computings, distributed and parallel processings, and computer
architectures.

Dr. Tzeng is a member of Tau Beta Pi.

Duncan H. Lawrie (S'66-M'73-SM'81-F'84) is
currently Professor of Computer Science, Professor
of Electrical and Computer Engineering, and Asso-
ciate Director of the Center for Supercomputing
Research and Development at the University of
Illinois, Urbana. He has contributed to the design of
several large computers including the Illiac IV
where he designed and implemented Glypnir, the
first high-level language for that machine, and the
Burroughs Scientific Processor where he was a
Principal Architect, specializing in the array mem-

ory system. He is currently a Principal Architect of the Cedar large-scale
multiprocessor at the University of Illinois, and directs the compiler and
operating systems development work for that machine. His main interest is in
the area of design and evaluation of computer architecture, with specialization
in the areas of high-speed algorithm design, communication networks, virtual
memory performance,.and the use of mass storage devices. He has been a
consultant to industry and government in the areas of computer organization,
local networking, and applications studies.

Dr. Lawrie was Chairman of the Symposium on High-Speed Computer and
Algorithm Organization, Program Chairman of the Ninth International
Conference on Parallel Processing, and General Chairman of the Fourth
International Conference on Distributed Computing Systems. He has also
served as Editor of the Computer Architecture and Systems Department of the
Communications of the ACM, and was the Chairman for Conferences and
Chairman for Tutorials of the Conferences and Tutorials Board as well as
Acting Vice President for Publications of the IEEE Computer Society. He is a
Member and Secretary of the IEEE Computer Society Governing Board
(1986-1987), and is a member of the Association for Computing Machinery.

395

